我们使用多机构系统来建模代理(代表公司)如何合作并适应业务“景观”,其中一些更具影响力的公司有能力塑造其他公司的景观。我们研究的景观是基于著名的Kauffman的NK模型,并增加了“塑造者”,这些公司可以为自己和所有其他玩家改变景观的特征。我们的工作调查了还可以赋予认知和体验式搜索的公司,以及与其他公司建立合作的能力,可以使用这些能力来更快,更熟练地适应。我们发现,在一个合作集团中,公司仍然必须有自己的想法,并抵制更强大的合作伙伴的直接模仿,以共同达到更好的高度。具有更大影响力成员的较大群体和群体通常会做得更好,因此有针对性的智能合作是有益的。这些结论是暂定的,我们的结果表明了对景观坚固性和“锻造性”的敏感性(即,塑造公司将改变景观的能力)。总体而言,我们的工作展示了计算机科学,演变和机器学习在这些复杂环境中为业务策略做出贡献的潜力。
translated by 谷歌翻译
对控制框架的兴趣越来越大,能够将机器人从工业笼子转移到非结构化环境并与人类共存。尽管某些特定应用(例如,医学机器人技术)有了显着改善,但仍然需要一个一般控制框架来改善鲁棒性和运动动力学。被动控制者在这个方向上显示出令人鼓舞的结果。但是,他们通常依靠虚拟能源储罐,只要它们不耗尽能量,就可以保证被动性。在本文中,提出了一个分形吸引子来实施可变的阻抗控制器,该控制器可以保留不依赖能箱的无源性。控制器使用渐近稳定电位场在所需状态周围生成一个分形吸引子,从而使控制器稳健地对离散化和数值集成误差。结果证明它可以在相互作用过程中准确跟踪轨迹和最终效应力。因此,这些属性使控制器非常适合需要在最终效应器上进行鲁棒动态相互作用的应用。
translated by 谷歌翻译
Machine learning about language can be improved by supplying it with specific knowledge and sources of external information. We present here a new version of the linked open data resource ConceptNet that is particularly well suited to be used with modern NLP techniques such as word embeddings.ConceptNet is a knowledge graph that connects words and phrases of natural language with labeled edges. Its knowledge is collected from many sources that include expertcreated resources, crowd-sourcing, and games with a purpose. It is designed to represent the general knowledge involved in understanding language, improving natural language applications by allowing the application to better understand the meanings behind the words people use.When ConceptNet is combined with word embeddings acquired from distributional semantics (such as word2vec), it provides applications with understanding that they would not acquire from distributional semantics alone, nor from narrower resources such as WordNet or DBPedia. We demonstrate this with state-of-the-art results on intrinsic evaluations of word relatedness that translate into improvements on applications of word vectors, including solving SAT-style analogies.• A net is used for catching fish.• "Leaves" is a form of the word "leaf ".• The word cold in English is studený in Czech.• O alimento é usado para comer [Food is used for eating].
translated by 谷歌翻译
We propose a distributionally robust return-risk model for Markov decision processes (MDPs) under risk and reward ambiguity. The proposed model optimizes the weighted average of mean and percentile performances, and it covers the distributionally robust MDPs and the distributionally robust chance-constrained MDPs (both under reward ambiguity) as special cases. By considering that the unknown reward distribution lies in a Wasserstein ambiguity set, we derive the tractable reformulation for our model. In particular, we show that that the return-risk model can also account for risk from uncertain transition kernel when one only seeks deterministic policies, and that a distributionally robust MDP under the percentile criterion can be reformulated as its nominal counterpart at an adjusted risk level. A scalable first-order algorithm is designed to solve large-scale problems, and we demonstrate the advantages of our proposed model and algorithm through numerical experiments.
translated by 谷歌翻译
Understanding the relationship between structure and sentiment is essential in highlighting future operations with online social networks. More specifically, within popular conversation on Twitter. This paper provides a development on the relationship between the two variables: structure, defined as the composition of a directed network, and sentiment, a quantified value of the positive/negative connotations of a conversation. We highlight thread sentiment to be inversely proportional to the strength and connectivity of a network. The second portion of this paper highlights differences in query types, specifically how the aforementioned behavior differs within four key query types. This paper focuses on topical, event-based, geographic, and individual queries as orientations which have differing behavior. Using cross-query analysis, we see that the relationship between structure and sentiment, though still inversely proportional, differs greatly across query types. We find this relationship to be the most clear within the individual queries and the least prevalent within the event-based queries. This paper provides a sociological progression in our understanding of opinion and networks, while providing a methodological advancement for future studies on similar subjects.
translated by 谷歌翻译
We present temporally layered architecture (TLA), a biologically inspired system for temporally adaptive distributed control. TLA layers a fast and a slow controller together to achieve temporal abstraction that allows each layer to focus on a different time-scale. Our design is biologically inspired and draws on the architecture of the human brain which executes actions at different timescales depending on the environment's demands. Such distributed control design is widespread across biological systems because it increases survivability and accuracy in certain and uncertain environments. We demonstrate that TLA can provide many advantages over existing approaches, including persistent exploration, adaptive control, explainable temporal behavior, compute efficiency and distributed control. We present two different algorithms for training TLA: (a) Closed-loop control, where the fast controller is trained over a pre-trained slow controller, allowing better exploration for the fast controller and closed-loop control where the fast controller decides whether to "act-or-not" at each timestep; and (b) Partially open loop control, where the slow controller is trained over a pre-trained fast controller, allowing for open loop-control where the slow controller picks a temporally extended action or defers the next n-actions to the fast controller. We evaluated our method on a suite of continuous control tasks and demonstrate the advantages of TLA over several strong baselines.
translated by 谷歌翻译
Data deprivation, or the lack of easily available and actionable information on the well-being of individuals, is a significant challenge for the developing world and an impediment to the design and operationalization of policies intended to alleviate poverty. In this paper we explore the suitability of data derived from OpenStreetMap to proxy for the location of two crucial public services: schools and health clinics. Thanks to the efforts of thousands of digital humanitarians, online mapping repositories such as OpenStreetMap contain millions of records on buildings and other structures, delineating both their location and often their use. Unfortunately much of this data is locked in complex, unstructured text rendering it seemingly unsuitable for classifying schools or clinics. We apply a scalable, unsupervised learning method to unlabeled OpenStreetMap building data to extract the location of schools and health clinics in ten countries in Africa. We find the topic modeling approach greatly improves performance versus reliance on structured keys alone. We validate our results by comparing schools and clinics identified by our OSM method versus those identified by the WHO, and describe OSM coverage gaps more broadly.
translated by 谷歌翻译
We present a new algorithm for automatically bounding the Taylor remainder series. In the special case of a scalar function $f: \mathbb{R} \mapsto \mathbb{R}$, our algorithm takes as input a reference point $x_0$, trust region $[a, b]$, and integer $k \ge 0$, and returns an interval $I$ such that $f(x) - \sum_{i=0}^k \frac {f^{(i)}(x_0)} {i!} (x - x_0)^i \in I (x - x_0)^{k+1}$ for all $x \in [a, b]$. As in automatic differentiation, the function $f$ is provided to the algorithm in symbolic form, and must be composed of known elementary functions. At a high level, our algorithm has two steps. First, for a variety of commonly-used elementary functions (e.g., $\exp$, $\log$), we derive sharp polynomial upper and lower bounds on the Taylor remainder series. We then recursively combine the bounds for the elementary functions using an interval arithmetic variant of Taylor-mode automatic differentiation. Our algorithm can make efficient use of machine learning hardware accelerators, and we provide an open source implementation in JAX. We then turn our attention to applications. Most notably, we use our new machinery to create the first universal majorization-minimization optimization algorithms: algorithms that iteratively minimize an arbitrary loss using a majorizer that is derived automatically, rather than by hand. Applied to machine learning, this leads to architecture-specific optimizers for training deep networks that converge from any starting point, without hyperparameter tuning. Our experiments show that for some optimization problems, these hyperparameter-free optimizers outperform tuned versions of gradient descent, Adam, and AdaGrad. We also show that our automatically-derived bounds can be used for verified global optimization and numerical integration, and to prove sharper versions of Jensen's inequality.
translated by 谷歌翻译
A typical product or place often has hundreds of reviews, and summarization of these texts is an important and challenging problem. Recent progress on abstractive summarization in domains such as news has been driven by supervised systems trained on hundreds of thousands of news articles paired with human-written summaries. However for opinion texts, such large scale datasets are rarely available. Unsupervised methods, self-training, and few-shot learning approaches bridge that gap. In this work, we present a novel self-training approach, OpineSum, for abstractive opinion summarization. The summaries in this approach are built using a novel application of textual entailment and capture the consensus of opinions across the various reviews for an item. This method can be used to obtain silver-standard summaries on a large scale and train both unsupervised and few-shot abstractive summarization systems. OpineSum achieves state-of-the-art performance in both settings.
translated by 谷歌翻译
The applicability of computational models to the biological world is an active topic of debate. We argue that a useful path forward results from abandoning hard boundaries between categories and adopting an observer-dependent, pragmatic view. Such a view dissolves the contingent dichotomies driven by human cognitive biases (e.g., tendency to oversimplify) and prior technological limitations in favor of a more continuous, gradualist view necessitated by the study of evolution, developmental biology, and intelligent machines. Efforts to re-shape living systems for biomedical or bioengineering purposes require prediction and control of their function at multiple scales. This is challenging for many reasons, one of which is that living systems perform multiple functions in the same place at the same time. We refer to this as "polycomputing" - the ability of the same substrate to simultaneously compute different things. This ability is an important way in which living things are a kind of computer, but not the familiar, linear, deterministic kind; rather, living things are computers in the broad sense of computational materials as reported in the rapidly-growing physical computing literature. We argue that an observer-centered framework for the computations performed by evolved and designed systems will improve the understanding of meso-scale events, as it has already done at quantum and relativistic scales. Here, we review examples of biological and technological polycomputing, and develop the idea that overloading of different functions on the same hardware is an important design principle that helps understand and build both evolved and designed systems. Learning to hack existing polycomputing substrates, as well as evolve and design new ones, will have massive impacts on regenerative medicine, robotics, and computer engineering.
translated by 谷歌翻译